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Take logs of both sides of this equation:
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The multiplication rule of logs states that: 
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Using this multiplication rule (with m=5 and n=x4), we get:
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Another rule of logs states that the power can be brought down to become a multiplier: 
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Using this rule (now with m=x and n=4), we get:
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Substituting 
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 gives us:
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Rearranging gives:
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If we plot log y against log x then we get a straight-line graph with gradient 4 (since this multiplies log x) and intercept log 5 (since the straight-line graph will cross the vertical axis at log 5, i.e. when log x = 0). 
(Note: we must use the multiplication rule first here since we have
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If we had the latter then we could use the second rule above, bringing down the power of 4 to become a multiplier, giving: 
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However, using this second rule first in the original question here would lead to the wrong answer since only the x is raised to the power of 4 and not (5x). This is a common confusion in questions of this type.)
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