

Intended learning objectives

- At the end of this session you should be able to:
 > understand the terminology of graphs and use axes, scales and co-ordinates
 - ➢ plot simple graphs
 - understand the equation of a straight line and use it to plot straight line graphs
 - > understand and solve problems involving unit quantities
 - understand and solve problems using probability trees
 - > use the rules for indices (multiply and divide powers, raise a power to a power, reciprocals)
 - understand what is meant by standard form and convert numbers to standard form

§ 1. Plotting graphs (interpolation)

1 drink costs
$$\frac{\pounds 12}{4} = \pounds 3$$

- 5 drinks cost *more than* 1 drink so *multiply* cost by 5
- \square 5 drinks cost £3×5 = £15

- It takes 24 weeks for 9 people to build 3 primary health centres (PHCs)
- How long does it take 4 people to build 6 PHCs?
 First make PHC the unit and calculate how many weeks it takes 9 people to build 1 PHC
 - $ightharpoonup \frac{24}{2} = 8$ weeks
 - Next ³/_make the number of people the unit and calculate how many weeks it takes 1 person to build 1 PHC
 8×9=72 weeks
 - Finally get answer by multiplying by the number of PHCs (6) and dividing by the number of people (4)
 - $rac{72\times6}{4}$ = 108 weeks for 4 people to build 6 PHCs

§ 4. Indices (rules)	
$a^m \times a^n = a^{m+n}$	$4^{3} \times 4^{2} = (4 \times 4 \times 4) \times (4 \times 4)$ $= 4^{5} = 4^{3+2}$
$a^m \div a^n = a^{m-n}$	$\frac{4^3}{4^2} = \frac{4 \times 4 \times 4}{4 \times 4} = 4 = 4^1 = 4^{3-2}$
$(a^m)^n = a^{m \times n}$	$(4^{3})^{2} = (4 \times 4 \times 4)^{2}$ = (4 \times 4 \times 4) \times (4 \times 4 \times 4) = 4^{6} = 4^{3 \times 2}
$a^{-m} = \frac{1}{a^m}$	$4^{-3} = \frac{1}{4^3}$

§ 4. Indices (more rules!)		
$a^0 = 1$ (assuming $a \neq 0$)	$4^{0} = 1$	
$a^{\frac{1}{n}} = \sqrt[n]{a}$	$4^{1/2} = \sqrt{4}$	
$a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$	$4^{3/2} = \sqrt{4^3} = \sqrt{64} = 8$ and $4^{3/2} = (\sqrt{4})^3 = (2)^3 = 8$	
$(a \times b)^n = a^n \times b^n$	$(4 \times 8)^{2} = (4 \times 8) \times (4 \times 8)$ $= 4 \times 4 \times 8 \times 8 = 4^{2} \times 8^{2}$	
$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{4}{8}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \text{ and } \frac{4^2}{8^2} = \frac{16}{64} = \frac{1}{4}$	

§ 5. Topics in Term 1 modules using basic maths skills

Graphs

- Descriptive statistics
- (visual representation of relationship between variables)

 Linear regression
- Problem solving
- Applying basic maths skills
- Thinking through appropriate strategies using these skills Powers and square root
- Variance
- Standard deviation
- Standard error
- Standard form
- Calculator readout

Intended learning objectives (achieved?)

- You should be able to:
- understand the terminology of graphs and use axes, scales and co-ordinates
- > plot simple graphs
- understand the equation of a straight line and use it to plot straight line graphs
- understand and solve problems involving unit quantities
- understand and solve problems using probability trees
- > use the rules for indices (multiply and divide powers, raise a power to a power, reciprocals)
- understand what is meant by standard form and convert numbers to standard form

Key rules of powers

- To multiply (quantities to) powers OF THE SAME BASE <u>add</u> the indices
- To divide (quantities to) powers OF THE SAME BASE <u>subtract</u> the indices
- To raise a power of a quantity to a power, <u>multiply</u> the indices
- A negative index gives the <u>reciprocal</u> of the quantity
- N.B. For next session: http://www.lshtm.ac.uk/edu/studyskills.html (subheading 'Maths and Numeracy Skills')